
Transactional Memory on a Dataflow Architecture
for Accelerating Haskell

ROBERTO GIORGI
University of Siena

Department of Information Engineering and Mathematics
Via Roma 56, Siena

ITALY
giorgi@dii.unisi.it

Abstract: Dataflow Architectures have been explored extensively in the past and are now re-evaluated from a dif-
ferent perspective as they can provide a viable solution to efficiently exploit multi/many core chips. Indeed, the
dataflow paradigm provides an elegant solution to distribute the computations on the available cores by starting
computations based on the availability of their input data.
In this paper, we refer to the DTA (Decoupled Threaded Architecture) – which relies on a dataflow execution model
– to show how Haskell could benefit from an architecture that matches the functional nature of that language. A
compilation toolchain based on the so called External Core – an intermediate representation used by Haskell – has
been implemented for most common data types and operations and in particular to support concurrent paradigms
(e.g. MVars, ForkIO) and Transactional Memory (TM).
We performed initial experiments to understand the efficiency of our code both against hand-coded DTA programs
and against GHC generated code for the x86 architecture. Moreover we analyzed the performance of a simple
shared-counter benchmark that is using TM in Haskell in both DTA and x86. The results of these experiments
clearly show a great potential for accelerating Haskell: for example the number of dynamically executed instruc-
tions can be more than one order of magnitude lower in case of Haskell+DTA compared to x86. Also the number
of memory accesses is drastically reduced in DTA.

Key–Words: Multithreaded Architecture, Data-flow Architecture, Haskell, Transactional Memory

1 Introduction
It is widely accepted that combining dataflow execu-
tion with functional programming can provide enough
implicit parallelism to achieve substantial gain com-
pared to non-dataflow machines. Functional program-
ming is a paradigm that treats computation as the eval-
uation of mathematical functions and avoids state and
mutable data. It emphasizes the application of func-
tions, in contrast with the imperative programming
style that emphasizes changes in state [37]. How-
ever, real-world computations may require a mutable
shared state as in the case of airline seat reservation or
in bank account update by multiple clients.

Software Transactional Memory (STM) is a con-
currency control mechanism analogous to database
transactions for controlling access to shared memory
[28], [15]. Transactions replace locking with atomic
execution units, so that the programmer can focus on
determining where atomicity is needed, rather than
how to realize it. With this abstraction, the program-
mer identifies the operations within a critical section,
while the STM implementation determines how to run

that section safely. Moreover, the optimistic control
over transactions allow the system to avoid unneces-
sary serialization of mutually exclusive operations. In
this work we deploy a decoupled multithreaded ar-
chitecture (DTA) [7] for an efficient symbiosis with
Haskell and its TM API.

One contribution of this research is the creation
of a tool to translate simple Haskell programs (using
External Core intermediate language [25,26]) in DTA
assembly language. A second contribution regards the
development of a dataflow based implementation of
STM (evaluated on the DTA). Examples and imple-
mentations are discussed in detail in this paper, while
an initial discussion can be found in [4].

The rest of the paper is organized as follows: we
briefly describe the DTA architecture (section 1.1) and
the Haskell STM (section 1.2); then, we illustrate the
tool we have developed for translating Haskell pro-
grams in DTA (section 2) and our first implementation
of STM in DTA (section 3). We clarify our method-
ology in section 4.1 and we discuss the results of our
experiments (section 5) and we conclude the paper.

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 546 Volume 14, 2015

1.1 Overview of the Decoupled Threaded Ar-
chitecture

The DTA architecture [7] is a hybrid dataflow ar-
chitecture that is based on the Scheduled DataFlow
(SDF) execution paradigm [19], [31] and more re-
cently has led to the TERAFLUX architecture [3],
[30], [5], [6], [10], [16], which binds to coarse grained
dataflow and multithreading. A DTA program is com-
piled into a series of non-blocking threads where all
memory accesses are decoupled from the execution
by using DataFlow Frames (DF-Frames), i.e., portions
of memory managed at architectural level with the ap-
propriate semantics (e.g., shared or private) by Thread
Scheduling Units (TSUs, Figure 2). The instructions
that manage DF-frames are reported in Table 1

Table 1: DF-Frame Related Instruction.

Instruction Meaning

FALLOC R1,R2,R3 Allocate a DF-frame (pointer in R3) for
Thread (pointer in R1) with a synchroniza-
tion count R2

FREAD R1,R2 Read from current DF-Frame at offset R1
and return the value in R2

FWRITE R1,R2,R3 Write in the DF-Frame (pointer in R1) at off-
set R2; the value is in R3

FFORKSP R1,R2 Switch control to Synchronization Pipe.
based on condition in R1; the code is pointed
by R2

FFORKEP R1,R2 Switch control to Execution Pipe. based on
condition in R1; the code is pointed by R2

Starting from a Control Data Flow Graph of a
program (or a portion of it) or from some intermedi-
ate representation as we are doing in this paper, each
thread is isolated in such a way that it consumes a
number of inputs and produces a number of outputs
(Figure 1). In this example a program is subdivided
into four threads. Thread 1 computes the variables a,
b and c and sends them to other threads. Threads 2 and
3 execute the calculation of F and G, they can act in
parallel because their bodies are independent. At last,
Thread 4 waits for the results of the other threads, then
it start its execution.

An important observation, is that the Threads
are DataFlow Threads (DF-Threads [6]), i.e., they
start executing when three conditions hold: i) a par-
ent thread has to allocate a frame (FALLOC instruc-
tion); ii) all their inputs had been written (by some
FWRITE instructions); iii) the data of the frame had
been prefetched [8]; iv) an external unit (the TSU) has
to decide that a suitable core for the execution is avail-
able.

In order to ensure that any thread will not start ex-
ecuting before all of its data is ready, a synchroniza-
tion count (SC) is associated to each of them. This
synchronization count is the number of inputs needed

FALLOC (&fp2, TH2, 1)

FALLOC (&fp3, TH3, 1)

FALLOC (&fp4, TH4, 3)

FWRITE(fp2, 0, a)

FWRITE(fp3, 0, b)

FWRITE(fp4, 0, c)

END

TH1: TH1:

a=…

b=…

c=…

TH4:

Z=

H(a,b,c)

TH3:

y=G(b)

TH2:

x=F(a)

Enables TLP

Figure 1: SDF/DTA execution paradigm. Dataflow execu-
tion enables Thread Level Parallelism (TLP).

by the thread. In this example, Thread 2 needs a, so its
synchronization count is 1, while the SC for Thread 4
is 3. Whenever the data needed by a thread are stored
(FWRITE instruction), the synchronization count is
decremented, once it reaches zero, it means that the
thread is ready to execute. DTA execution model uses
DF-frames to pass data from one thread to other ones.
DMA mechanisms and prefetching assist the proces-
sor to make sure that the data is in a local memory
(e.g., the cache or a scratchpad [9]). DF-Frames are
dynamically allocated whenever there is a need to exe-
cute a corresponding thread instance: this is similar to
memory allocation, but the thread that issues a FAL-
LOC does not need to wait much time: the frame can
be preallocated and inserted in a local pool. The DF-
frame has a fixed size and it can be written by other
threads and read only by the thread that it belongs to.
The FREAD instruction is used at the beginning of
a thread to load the data from such local DF-frame:
such phase is denoted as ”Pre-Load phase”. When
the thread is ready to store its outputs, it issues sev-
eral FWRITEs as needed: such phase is denoted as
”Post-Store phase”. In the original SDF architecture
and in the DTA, each core is encompassing two or
more pipelines [38] that can operate in parallel by par-
tially overlapping the execution of the rest of instruc-
tions (Execution Pipeline) and Load/Store instructions
(Synchronization Pipeline)

In other words, during the Pre-Load phase data
is read from a local memory and possibly stored in
local registers. In the Execution phase thread executes
without any memory access and uses only the data that
are in the registers. In the Post-Store phase after the
computation is finished, a thread writes data to other
threads’ DF-frames and, if needed, it writes data to
main memory.

The DTA is based on this execution paradigm and
adds the concept of clustering resources and the Dis-
tributed Scheduler (DS) instead of a single centralized
TSU as in the SDF, trying to address the on-chip scala-
bility problem [7]. Each cluster in the architecture has
the same structure and can be considered as a modular

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 547 Volume 14, 2015

Cluster Cluster

INTER-CLUSTER NETWORK Core Core

LSE LSE

INTRA-CLUSTER NET.

DSE Cluster

Core

Execution Pipe

Synchronization Pipe

Synchronization Pipe

Registers

L1/SCRATCHPAD

Figure 2: Overview of DTA architecture. LSE=Local
Scheduling Unit. DSE=Distributed Scheduling Unit.

tile of the architecture. Scalability can be achieved by
simply adding tiles.

DTA consists of several clusters, as seen in Fig-
ure 2. Each includes one or more cores and a Dis-
tributed Scheduler Element (DSE). Each core needs a
Local Scheduler Element (LSE) to talk with the DSE.
The set of all DSEs constitutes the Distributed Sched-
uler (DS).

This property of the cluster logically leads to the
need of a fast interconnection network inside the clus-
ter (intra-cluster network), while the network for con-
necting all clusters (inter-cluster network) can be cho-
sen with more flexibility. The actual amount of pro-
cessing elements that can fit into one cluster will de-
pend on the technology that is used.

Other approaches to Dataflow Architectures at-
tempt to map the program directly in the FPGA, such
is in the ChipCflow project [2], in the MAXELER
dataflow computers [22], exploit partial reconfigu-
ration of the programmable logic to map multiple
cores [29], or using a dataflow substrate that can be
governed through fast reconfiguration of the dataflow
graph and asynchronous execution [35, 36]. Recent
efforts provide also first hardware evaluation of TSU-
like architectural support [21].

1.2 Transactional Memory in Haskell

Haskell is a purely functional language born in 1990
and has been further specified in the Haskell98,
Haskell2010, Haskell 2014. The Glasgow Haskell
Compiler (GHC) [23] is the de-facto standard. It pro-
vides a compilation and runtime system for Haskell
[17], a pure, lazy, functional programming language
and supports strong static typing. Since version 6.6
(we used the version 6.8) GHC contains STM func-
tions built into the Concurrent Haskell library [25],
providing abstractions for communicating between

explicitly-forked threads. STM is expressed elegantly
in a declarative language and Haskell’s type system
(particularly the monadic mechanism) forces threads
to access shared variables only inside a transaction.
This useful restriction is more likely to be violated un-
der other programming paradigms, for example direct
access to memory locations [11], [12].

Listing 1: Code for the recursive Fibonacci algorithm
in Haskell.

f i b : : I n t −−> I n t
f i b 0 = 1
f i b 1 = 1
f i b n = f i b (n−1) + f i b (n−2)

Although the Haskell is very different from other
languages like C# or C++ (see Listing 1), the actual
STM operations are used with an imperative style,
thanks to the monadic mechanism, and the STM im-
plementation uses the same techniques used in main-
stream languages [13]. The use of monads also grants
a safe access to shared memory only inside a trans-
action and assures that I/O actions can be performed
only outside a transaction. This guarantees that shared
memory cannot be modified without the protection of
the Haskell atomically function. This kind of protec-
tion is known as “strong atomicity” [20]. Moreover
this context makes possible the complete separation
between computations that have side-effects and the
ones that are effect-free. Utilizing a purely-declarative
language for TM also provides explicit read/writes
from/to mutable cells (cells that contain data of dif-
ferent types). Memory operations that are also per-
formed by functional computations are never tracked
by STM unnecessarily, since they never need to be
rolled back [13].

Threads in STM Haskell communicate by reading
and writing transactional variables, or TVars, pointers
to shared memory locations that can be accessed only
within transactions. All STM operations make use of
the STM monad [14], which supports a set of trans-
actional operations, including the functions newTVar,
readTVar and writeTVar, which perform the operation
of creating, reading and writing transactional vari-
ables as shown in Table 2.

When a transaction is finished, it is validated
by the runtime system by looking if it is executed
on a consistent system state and no variable used in
the transaction was modified by some other executed
thread. In such case, the modifications of the trans-
action are committed, otherwise, they are discarded
[24].

The other operation in the STM monad are the
retry and orElse functions. The first blocks a trans-

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 548 Volume 14, 2015

action until at least one of the TVars it uses is mod-
ified. The second allows two transactions to be tried
in sequence. If the first makes a retry then the second
starts.

Table 2: Haskell STM operations.

STM Function Haskell Type
atomically STM a ->IO a

newTvar a ->STM (TVar a)
readTVar TVar a ->STM a
writeTvar TVar a ->a ->STM()

retry STM a
orElse STM a ->STM a ->STM a

The Haskell STM runtime maintains a list of ac-
cessed transactional variables for each transaction,
where all the modified variables are in the “writeset”
and the read (but not written) ones are in the “readset”
of the transaction. This list is maintained in a per-
thread transaction log that records the state of the vari-
ables before the beginning of the transaction and every
access made to those TVars. When atomically func-
tion is invoked, the STM runtime checks that these
accesses are valid and that no concurrent transaction
has committed conflicting updates. In case the valida-
tion turns out to be successful, then the modications
are committed.

2 Compiling from Haskell to DTA
Assembly

We developed a simple compiler prototype for Haskell
programs able to create an equal representation in
DTA assembly.

The Glasgow Haskell Compiler (GHC) uses an
intermediate language, called “Core” [26] [27] as its
internal program representation during some pass in
the compiler chain. The Core language consists of the
lambda calculus augmented with let-expressions (both
non-recursive and recursive), case expressions, data
constructors, literals, and primitive operations. Ac-
tually GHC’s intermediate language is an explicitly-
typed language based on System FC [32].

As a front end of our compilation toolchain, we
use External Core (EC) [33], which is an external rep-
resentation of this language created by GHC’s devel-
opers to help people trying to write part of an Haskell
compiler to interface with the GHC itself.

The utilization of External Core representation
has some advantages compared to the use of Core, the
internal representation of this Intermediate language.
First, the existence of some instruments already using

this language. In particular, we extracted an EC parser
from the front end tool of an existing tool for translat-
ing EC to Java and found some Haskell library in this
format, which helps the specifications of some data
types. Another advantage is a more expressive spec-
ification of the data types that are found during the
compilation of the program. This is extremely useful
in case we have to work on structured data types, and
in the management of functions and methods.

The External Core presents also some disadvan-
tages. First, in the last GHC’s versions this language
is generated from the direct translation of internal
Core in a series of steps using operational instruments
within the GHC not completely up to date. So many
existing instruments existing for this language, like
the ones available in GHC itself, are not 100% reli-
able. The biggest problems of this EC representation
is the absence of the specification of primitive func-
tions execution, the computational behavior of exter-
nal functions and the way to manage overloaded func-
tions.

Our compiler is composed of two main parts. The
front end has the task of analyzing the EC input file,
performing the lexical and semantic analysis, then re-
turning a data structure holding the lexical tree repre-
senting the entire examined program. Using this tree,
a series of steps are performed to optimize the code
generated in the first draft to simplify its structure. In
particular, a rewriting phase applies a series of trans-
formation to that tree to make sure the module is in
canonical form, so it can not be reduced further, and it
is ready for the next steps. Once this part is finished,
the back end of our compiler analyzes the data tree,
according to the features of the program’s workflow.
Then the corresponding DTA code is generated.

2.1 Translating standard elements

A Haskell program is made by a series of modules,
which can be freely imported by each others, each of
them specifies two categories of definitions:

1. Type definitions: definitions that are created
from data and newtype keywords. They rep-
resent data types specified within the module
where that keyword appear. A data type, in
Haskell, can be seen as a set of values with com-
mon features. It can be simple, if the data is a
primitive type, such as integer, character values
or enumerations. On the other way, it could be
a structured data type, if it is defined by using
other types. The major examples of such data
types, in Haskell, are lists or tuples. In our com-
piler the type management is made by creating
data structures that are specific for the data type,

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 549 Volume 14, 2015

which hold a list of possible values of the specific
type. Then, during the compilation, the assign-
ment is made according with some simple rules:

• Primitive types are translated straightfor-
wardly, whenever a value of this type is
found is directly assigned to the container.
Enumerations are coded in a very similar
way; the possible values are assigned ac-
cordingly to the coded values in the data
definition.
• Structured data types are implemented as

tree-like structures that holds the data types
used in their definition.

The Haskell’s static type system assures that,
within this model, errors never occur during the
execution phase. Whenever an evaluation takes
place, the result is guaranteed to have the correct
data type, so the system is able to manage it.

2. Top definitions: they are a list of high level
functions, that are bound to an expression that
specifies the actual operations to execute. Top
level definitions can be constant functions or
non-constant functions. Constant functions, rep-
resenting a fixed value within the program flow,
can be seen as a global variable. Non-constant
functions perform actual computation. The first
are translated by our tool, according to the type
of expression, into assignments. The second are
translated in a series of DTA threads holding all
the needed instructions, representing the expres-
sions describing the execution of the function.
Each expression is specifically computed accord-
ing to its particular definition. The possible defi-
nitions of an expression are the following:

• Var: it represent the invocation within a
function of a variable, bound to a specific
function. In our implementation a constant
primitive or enumeration variable is simply
translated in a series of direct assignment
to values. Although this is different from
Haskell general case, where every variable
is stored into the Heap, for implementing
its lazy behavior, we choose this solution
that does not have side effects.
On the other hand, if the variable represents
a complex data type, an ad-hoc data struc-
ture is allocated in the memory, according
to the data type definition, and the pointer
to this area is returned to the thread. If
the variable is bound to a function, which
makes a computation, the program at this
point creates a new thread that calls the

needed function to be executed, then it ends
its execution. In case the parent thread
needs the result of that function, the sub-
sequent code of such thread is placed in a
sub thread, which collects the needed re-
sults. Such thread is called right before the
parent thread exits.
• Let: this statement creates a binding of the

result of an expression to a specified vari-
able. It is treated as a local variable within
the function. It is managed in the same way
as a top level definition, but with different
scopes. If the binding represents a different
function, it is translated in a different thread
in the DTA code.
• App: this definition represents the passing

of a series of expressions to the main ex-
pression as arguments. Typically, it de-
scribes the invocation of a function with
some parameters. In our tool every expres-
sion in evaluated separately, then the results
of the argument evaluation are passed to
the evaluation of the main expression. If
some argument creates a separate thread,
the main expression also generates a new
thread, which receives the return values.
• Lambda: this statement makes the binding

to a variable, used in the main function, of a
value coming from the outside of the func-
tion itself. It is translated in a series of load
instruction according to the data types.
• Case: the case statement has two main du-

ties. First, as classical control flow. It eval-
uates the main expression, then compares it
with the possible alternatives and, accord-
ing with the results, chooses the right path.
The comparison is direct if the data are
simple and can be stored in the registers.
If this is not possible, then the EC syntax
makes a binding of the value according to
its type to make the inner structure of the
data available to the following expressions.
In this case the compiler follows the same
method. The second use of case involves
the creation of an Haskell class’ instance.
It specifies, according with the data types
involved in the computation, which meth-
ods are available in the expression. Cur-
rently, the system is not able to manage
automatically the translation of such meth-
ods, but the needed instructions are directly
created from the compiler for some of the
simpler and most used class, like arithmetic
and logic operations.

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 550 Volume 14, 2015

2.2 The Monadic System

Another important aspect of the translation from
Haskell is the monadic mechanism. It makes possi-
ble to execute actions, defined within the monad itself,
sequentially. In our case, this method is translated by
the creation of a series of sub-threads, called one after
another. This method makes possible to execute the
specific actions in the right order. Many of those sub-
threads, nevertheless, have a very small body. Often
the only action they execute is to call a function that
actually performs the computation and passing to it
the data correctly. This creates a great overhead in the
execution model. A similar problem is present in the
management of polymorphic functions. In Haskell,
those functions are resolved creating a middle func-
tion, which calls the correct function implementation,
according to the data types of the parameters. In our
compiler, in this situation, a thread is created, to rep-
resents the intermediate function. This thread calls the
code for the actual compilation. Usually this is a sin-
gle I/O instruction in our experiments.

Currently the HDTA tool can execute the auto-
matic translation of simple Haskell programs, per-
forming integer calculations, basic I/O operations, and
management of the more common data type like enu-
merations and lists.

3 Mapping Transactional Memory
to DTA

As a first step for porting the STM system in DTA,
we have chosen a simple benchmark performing the
increment of a variable that is shared between two
threads, each performing a fixed number of iterations.
This program translated in a DTA implementation by
hand, trying to follow as closely as possible the meth-
ods specified for the compiler, with the goal of mak-
ing it as generic as possible. We use this program as
a starting point to have some ideas about the concur-
rency system, the performance, and the problems that
the introduction of this model can generate.

We implemented in DTA three basic mechanisms
that we illustrate below:

1. Generating concurrent threads.

2. Managing thread synchronization and communi-
cation.

3. Basic transactional memory system.

3.1 Generating concurrent threads

The Haskell concurrent paradigm involves the use of
forkIO function to create concurrent threads, which

takes as input an Haskell IO action (it can be a single
action or, more likely, a sequence of actions) creating
a thread operating concurrently with the main thread.
To implement this mechanism, we use the threading
system that is present in the DTA paradigm. We con-
sider the whole input action as the body of the gener-
ated thread.

3.2 Managing thread synchronization and
communication

In Haskell, communication among concurrent threads
is supported by the use of particular data structures
called MVar. Each MVar represents a reference to
a mutable location, which can be empty or full with
a value. The communication between threads makes
use of those variables. If they are in an unsafe state (if
a reading MVar is empty, or a writing MVar is full) the
thread is blocked until the state is safe. It is important
to point that Haskell thread are blocking, while DTA
thread are not, so we had to introduce a way to trans-
late the behavior of blocking threads in a non blocking
environment, trying to maintain a close similarity with
the original Haskell behavior. In our DTA implemen-
tation, when a thread should block, it saves the needed
data for continuing its execution then it terminates it-
self. Such data are (this is similar to generate a new
thread):

1. The parameters needed to the continuation of the
execution.

2. The values needed to restart the execution of the
thread from the right point, like the thread iden-
tifier, the pointer to the correct restarting thread
and the number of the needed parameters.

3.3 Basic transactional memory system

For the implementation of the basic transactional sys-
tem, we dealt with the reading and writing of TVars,
the creation and management of logs, and the valida-
tion and commit of transactions. Currently our imple-
mentation is based in DTA code. The basic compo-
nents of the model are the Transaction Initialization
and the Transaction Validation.

• Transaction Initialization: In Haskell, a trans-
action is the body of the atomically function.
Like in the case of forkIO function, the code
within this function is translated into a series of
threads, maintaining the correct dependency or-
der between the specified STM actions. A start-
ing thread has the duty tasks of activating the
above function threads and creating the Transac-
tional Log. This thread makes sure, according

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 551 Volume 14, 2015

to the transactional variables that are present in
the function writeset and readset, that the param-
eters passed to the function will go to write and
read the log instead of the actual memory loca-
tion, making the computation safe until it will be
validated. This method makes possible to face
another general feature of Haskell functional be-
havior, that is the passing of functions as argu-
ments to other functions. This feature was treated
in a very similar way to the thread synchroniza-
tion problem. A memory structure is created,
containing all the information needed to execute
a thread. The management of the communication
of parameters involving function passing is one
of the greatest difficulties in our efforts to man-
age an automatic Haskell-DTA translation, and
yet not fully resolved.

• Transaction Validation: The validation is done
by a specific thread called at the end of the op-
erations described in the transaction body. This
thread performs the control needed to assure the
correctness of the transaction, by checking that
the value of the variables involved in the transac-
tion is not changed. The validation, and eventu-
ally the commit phases, are serialized in order to
assure the TVars consistency.

In our example we use only a single TVar, so we used
the simplest mechanism available in the STM system,
a global lock on the entire TVar set. We are working to
extend this simple mechanism to manage more com-
plex situations, like a layer TVar set for transactions,
and the use of complex data types. To solve the above
problems we are evaluating the possibility to support
purely software mechanisms by using the underling
architecture, like convenient System Calls or ad hoc
instructions.

4 Experiments and Methodology

We make three different types of experiments.
The first experiment (see 5.1) involves the eval-

uation of a DTA program compiled by our tool from
Haskell (here named HDTA, compared with an equiv-
alent program, initially specified in C language and
then hand-coded directly into DTA assembly. As
benchmark we choose the recursive Fibonacci algo-
rithm as it can easily generate a large number of
threads, with n=15 as input. The purpose of this ex-
periment is to validate the Haskell-to-DTA toolchain
and evaluate its performance again the C-to-DTA
(hand-coded) translation. In this case, we also test the
strong scaling by varying the number of cores from 1
to 8 and keeping a fixed input.

The second experiment (see 5.2) aims at compar-
ing the performance of the code generated by our tool
(HDTA) against the code generated by the GHC on
an x86 machine. We used also in this case the same
recursive Fibonacci written in Haskell (see Listing 1).
For a fair comparison, since we were not interested in
optimizing our code, we compiled with no optimiza-
tion also in GHC. In this case we also investigated
the weak scaling by keeping the number of proces-
sors fixed to one and varying the value of the input
(n=10,12,15,17).

In the third experiment (see 5.3) we choose a sim-
ple benchmark that is appropriate to test the Transac-
tional memory. We choose the “counter” benchmark
(Listing 2) where two concurrent threads try to update
a shared counter protected by the Transactional Mem-
ory (atomically keyword), in order to create a situa-
tion of potential contention (this is typically a worst
case since most likely there will be serialization of the
transactions). In order to create a true contention we
use in this case two active processors (cores), both in
the simulator and in the actual x86 system (GHC has
parallel execution enabled). The counter should up-
date the counter up to 10000 (5000 for each of the
two running threads.

Listing 2: Code of the “counter” benchmark.
module Main where
import GHC. Conc
import C o n t r o l . C o n c u r r e n t

incTVar : : TVar I n t −> STM ()
incTVar a = do

tmp <− readTVar a
wr i t eTVar a (tmp +1)

loop n f = mapM (\ −> f) [1 . . n]

main = do
x <− newTVarIO 0
n <− re turn 5000
j o i n 1 <− newEmptyMVar
j o i n 2 <− newEmptyMVar
f o r k I O $ do

l oop n $ do
a t o m i c a l l y (incTVar x)

putMVar j o i n 1 ()
f o r k I O $ do

l oop n $ do
a t o m i c a l l y (incTVar x)

putMVar j o i n 2 ()
takeMVar j o i n 1
takeMVar j o i n 2
tmp <− a t o m i c a l l y (readTVar x)
p r i n t tmp

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 552 Volume 14, 2015

4.1 Methodology

All the experiments are executed on an Intel Core-
2 (E8200) 2.66 GHz, with a 1.33 GHz front side
bus. This is a superscalar processor with Wide Dy-
namic Execution that enables each core to complete
up to four instructions per cycle.It has a 32KB L1 data
cache and 32KB instruction 8-way associative cache,
and a 6MB shared L2 32-way associative cache. This
processor optimizes the use of the data bandwidth
from the memory subsystem to accelerate out-of-
order execution and uses a prediction mechanism that
reduces the time in-flight instructions have to wait for
data. New prefetch algorithms move data from system
memory into L2 cache in advance of execution. These
features help keep the processor pipeline full.

The performance of the DTA programs is ana-
lyzed by using a simulator with a 5-stage pipeline, 64
registers and 4096 frames of 256 64-bit entries. DTA
uses a 128-bit intra-cluster single bus with 2-cycle la-
tency and a 128-bit intra-cluster with 4-cycle latency.
Since the purpose of these experiments is to validate
the software side of the toolchain, we assume a perfect
memory hierarchy. More in general, recent state-of-
the-art for on-chip memory hierarchy should assume
a Non-Uniform Cache Architecture (NUCA) [1]. Al-
though the DTA architecture can work with a large
number of cores and clusters [7] in this setup we are
analyzing a single cluster.

The performance analysis of the Haskell pro-
grams, which are compiled for the x86 machine, is
performed with the following methodology. The in-
formation about the cycles that the x86 processor
spent while running the GHC-compiled Haskell pro-
grams are collected through the use of the RDTSC in-
struction [18] in order to read the 64-bit internal Time
Stamp Counter (TSC), present in the x86 machines
since the Pentium. The GHC-x86 memory footprint
is obtained by the profiling options available in GHC
(+RTS -s). The GHC-x86 cache statistics are captured
by using the cachegrind tool [34], which allows to
keep track of the user and library memory accesses,
without the operating system (kernel) interference.

5 Analysis of the Experimental Re-
sults

In this section we present and discuss the results of the
three experiments that we just introduced. The three
experiments aim at validating the HDTA toolchain
(Haskell-to-DTA) and in particular for what concern
the support for the Transactional Memory on the
Dataflow based execution model offered by the De-
coupled Threaded Architecture (DTA).

5.1 Experiment-1

First, we evaluate the CPU cycles needed to perform
the calculation of the Fibonacci number with input
n=15, while varying the number of cores (Figure 3).
We can see that the code generated automatically by
our HDTA tool (Fib-HDTA) is more efficient than the
manually coded version (Fib-manHDTA), indicating
that the HDTA generates more optimized code for the
Dataflow based architecture (DTA). The advantage of
the HDTA version is more evident in Figure 4 where
we took as reference the execution time of the man-
ually generated DTA code: the HDTA code results
from about 40% to about 90% faster than the manually
generated version. This is likely due to the fact that,
not only the Haskell program generates less threads,
but it does so only when needed, while the manually
generated version creates threads at the beginning of
its execution then waits for all them to complete their
computation, as confirmed in Figure 7.

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 4 8

C
P

U
 c

y
cl

e
s

Cores

FIB(15) Fib-HDTA

Fib-manDTA

Figure 3: Number of CPU cycles when executing Fi-
bonacci(15) in the our Haskell-generated DTA version
(Fib-HDTA) and the manually coded DTA version (Fib-
manDTA) while varying the number of cores.

In order to better understand the reasons of this
advantage in case of the HDTA-generated code, we
examine the breakdown of the instructions executed
by our benchmark in the two cases, in a single core
configuration (Figure 5). As we can see, the num-
ber of FALLOC instructions (DF-frame allocation) is
lower in the HDTA-generated code compared to the
manually generated code. This can be seen more
clearly in Figure 6. In the same figure, the number of
FREAD/FWRITEs tell us the data that is passed from
one thread to another in a producer-consumer fashion.
The number of arithmetic and logic operations (ALU)
show that the HDTA coded version needs less ALU
operations. Regarding the FFORKs, since they act as

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 553 Volume 14, 2015

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8

S
p
e
e
d
u
p

Cores

FIB(15)Fib-HDTA

Fib-manDTA

Figure 4: Speedup of our Haskell-generated DTA version
(Fib-HDTA) versus the manually coded DTA version (Fib-
manDTA) while varying the number of cores.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

FIB-manDTA FIB-HDTA

N
o

.
o

f
D

y
n

a
m

ic
 I

n
st

ru
ct

io
n

s

FIB(15)

FALLOC

FREAD/FWRITE

ALU

FFORK

Figure 5: Number of instructions dynamically executed by
the compilation of Fibonacci(15) and a single core.

a switch of the control between the execution and syn-
chronization pipeline we observe an opposite behavior
from the previous instruction categories. This means
that the HDTA needs to switch more often among the
two pipelines, since Haskell, because of its functional
behavior, generates a less linear workflow.

We also examined the utilization of the pipeline
during the execution of the two versions of the bench-
mark (not shown in graphs): in both cases (HDTA
and manDTA we observed a high utilization, about
96% for manDTA and about 97% for the HDTA gen-
erated code. This tell us that the code is in both
cases well suited for the DTA architecture. Finally,
we show the number of threads that are generated dy-
namically (Figure 7) and that are either waiting for

0

5000

10000

15000

20000

FFORK ALU FREAD/FWRITE FALLOC

N
o

.
o

f
D

y
n

a
m

ic
 I

n
st

ru
ct

io
n

s

FIB(15) FIB-manDTA

FIB-HDTA

Figure 6: Comparing the number of instructions by type
in case of Fibonacci(15) and a single core.

No. of Threads

Execution Cycles (time/clock_period)

Waiting Threads (HDTA)

Waiting Threads (manDTA)

Threads in Pre-Load Phase(HDTA)

(and manDTA)

Figure 7: Number of threads in the pipeline queue and
in the wait table generated by the compilation of Fi-
bonacci(15).

their inputs (Waiting Threads) or ready to be executed
(they completed the Pre-load phase). Those results
shows both cases (HDTA and manDTA) have a similar
execution flow, but the HDTA version generates less
threads, while the other seems to create early most of
the threads, which therefore wait longer.

5.2 Experiment-2

In this case we compare the execution cycles for sev-
eral inputs (n=10,12,15,17) in case of a single core
(Figure 8) and contrast the execution obtained by the
HDTA tool versus the x86 code running as generated
by GHC and running on a real machine. According
to the experimental data, the HDTA generated code

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 554 Volume 14, 2015

shows a better behavior as it needs only a fraction of
the time needed by the GHC generated code. The
HDTA version shows a much better scalability with
the input set, but we should recall that the DTA eval-
uation assumes a perfect memory hierarchy. How-
ever, this assumption should not impact much since
the memory footprint is not so large as discussed in
the following.

0

100000

200000

300000

400000

500000

600000

700000

800000

10 12 15 17

C
P

U
 c

y
cl

e
s

Input size (n)

FIB(n)
Fib-HDTA

Fib-GHCx86

Figure 8: Number of CPU cycles of the execution of Fi-
bonacci(n): DTA versus x86 GHC code.

0

50

100

150

200

250

10 12 15 17

M
e

m
o

ry
 U

ti
li

za
ti

o
n

 (
K

B
)

Input Size (n)

FIB(n)

Fib-HDTA

Fib-GHCx86

Figure 9: Memory Allocated (in KB) by the execution of
Fibonacci(n): DTA versus x86 GHC code.

To evaluate the impact of the memory hierarchy,
we collected the memory footprint size (Figure 9). It
is important to point out that in the DTA, accesses
are essentially due to loads and stores into the frame
memory, not in the shared (main) memory (Figures 10
and 11). Instead, the GHC compiled program uses
only the main memory during its execution. However,

also the x86 GHC code the cache performance is very
good: the miss-rate that we measured is under 2% (not
shown), so we can assume the memory latency is not
the main bottleneck.

0

200000

400000

600000

800000

1000000

1200000

1400000

D
y

n
a

m
ic

 I
n

st
ru

ct
io

n
 C

o
u

n
t

Input Size (n), compiler

FIB(n)Frame Memory

Main Memory

Other Instructions

Figure 10: Dynamic Instruction Count for Fibonacci(n):
DTA versus x86 GHC code.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

10 Fib-HDTA 12 Fib-HDTA 15 Fib-HDTA 17 Fib-HDTA

D
y

n
a

m
ic

 I
n

st
ru

ct
io

n
 C

o
u

n
t

Input Size (n), compiler

FIB(n)
Frame Memory

Main Memory

Other Instructions

Figure 11: Dynamic Instruction Count for Fibonacci(n):
DTA code (zoom).

More in detail, we see that the instructions dy-
namically executed by the program generated with the
HDTA tool are much less than those related to the
x86 GHC code (Figures 10 and 11), even by consid-
ering the inner parallelism of the processor that helps
contain the execution time. The x86 GHC generated
code makes a wide use of the main memory, about
half of the instructions are memory accesses, while
the HDTA code did not use the main memory at all
and its number of memory accesses is lower than for
GHC. Moreover, the dynamic instruction count does

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 555 Volume 14, 2015

not depend by the memory hierarchy and it clearly in-
dicates a large advantage for the DTA architecture.

In conclusion, also in this second experiment, we
observed a good behavior of the HDTA tests com-
pared to the x86 GHC generated code. It has to be
noted that much of the complexity of the GHC com-
piled programs comes from the run time systems,
which performs a great deal of work to implement
the laziness of the program, the management of the
heap, and the garbage collector functionality. While
our program only performs pure calculation, without
a lazy behavior. Nevertheless, those results show that
the use of Haskell on DTA architecture is a promising
way to exploit the capabilities of this paradigm, as it
generates almost an order of magnitude less dynamic
instructions in same cases.

5.3 Experiment-3

As before, we start evaluating the CPU cycles for dif-
ferent inputs as we contrast the HDTA generated code
with the x86 GHC generated code.

In this case the input number is represented by
the number of times we wish to increment the shared
counter (Figures 12, 13, 14, 15). The counter total
is reported on the horizontal axis. In this experiment
the Transactional Memory protection is used to access
the shared counter. As we can see, the behavior of the
HDTA generated code is better. Also in this case, as in
the previous experiment, we evaluated the impact of
the memory footprint and the impact of the memory
hierarchy for the case of the x86 code.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

5000 10000 20000 50000

C
P

U
 c

y
cl

e
s

Input Size (n)

Counter(n)

counter-HDTA

counter-GHCx86

Figure 12: Number of CPU cycles for the shared-counter
benchmark using TM (Listing 2): DTA versus x86 GHC
code.

In Figure 13, the memory footprint is reported.
We see that the HDTA code needs only a half of the

memory needed by the GHC code. This is likely due
to the lazy behavior of Haskell, which has a greater
and more sophisticated use of the memory. Also, as
shown in Table 3, the GHC compiled program has a
very low miss rate both in the L1 (under 1%) and L2
(under 0.3%). This is in-line with the fact that the
footprint is smaller than the last level cache size.

0

1000

2000

3000

4000

5000

6000

7000

5000 10000 20000 50000

C
P

U
 c

y
cl

e
s

Input Size (n)

Counter(n)

counter-HDTA

counter-GHCx86

Figure 13: Memory Allocated (in KB) by the execution of
Counter(n): DTA versus x86 GHC code.

Table 3: Cache miss rate for the GHC execution of the
counter example (Listing 2).

2500 It 5000 It 10000 It 25000 It

L1-I Miss Rate 0.02% 0.01% 7.5E-3% 3.3E-3%
L1-D Miss Rate 0.9% 0.8% 0.8% 0.8%
L2-I Miss Rate 0.01% 5.2E-3% 2.6E-3% 1.0E-3%

L2-D Miss Rate 0.3% 0.2% 0.1% 0.1%

Third, we show the dynamic instruction generated
by the our DTA programs by the GHC compiled pro-
gram (Figures 14 and 15). The comparison shows that
both benchmarks use about half instructions to access
the memory, but the HDTA code uses only a part of
those instruction to access the main memory. This
is certainly due to the simplicity of our Transactional
Memory mechanism compared the GHC TM mecha-
nism and the whole run time system.

Those results show us that even a really simple
implementation of a TM mechanism in DTA environ-
ment has a good performance and show the good po-
tential of the proposed approach, despite the limita-
tions that we pointed out.

In this case, differently from the previous experi-
ment, one important point is that the parallelism gen-
erated by the purely functional calculation, like Fi-
bonacci appears much greater than in the case of a pro-

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 556 Volume 14, 2015

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

D
y

n
a

m
ic

 I
n

st
ru

ct
io

n
 C

o
u

n
t

Input Size (n), compiler

Counter(n)
Frame Memory

Main Memory

Other Instructions

Figure 14: Dynamic Instruction Count for Counter(n):
DTA versus x86 GHC code.

0

5000000

10000000

15000000

20000000

25000000

30000000

2500, Fib-HDTA 5000, Fib-HDTA 10000, Fib-HDTA 25000, Fib-HDTA

D
y

n
a

m
ic

 I
n

st
ru

ct
io

n
 C

o
u

n
t

Input Size(n), compiler

Counter(n)

Frame Memory

Main Memory

Other Instructions

Figure 15: Dynamic Instruction Count for Counter(n):
DTA code (zoom).

gram only using monad computations. In fact, in the
latter case no more than three or four parallel threads
were generated.

This work shows the possibility of combining
Transactional Memory on a dataflow model of exe-
cution and that the obtained performance can be very
competitive.

6 Conclusion

The main goal of this research is to demonstrate that
it is possible to translate the functional behavior of the
Haskell language in a dataflow based architecture like
DTA. In particular, the Transactional Memory support

has been proved possible and efficient as compared to
the Software Transactional Memory support provided
by the GHC.

We realized a first version of a compiler from
Haskell to DTA assembly (called HDTA), that is avail-
able under request. We compared the performance of
the code that was generated by HDTA both against
manually translated C-code into DTA assembly and
against the x86 code generated by the GHC. Despite
some practical limitation of the experiments that can
be easily overcome in the future, we have clearly
found that HDTA largely outperforms (in same case
of an order of magnitude) GHC in terms of instruc-
tions that are dynamically generated and also in terms
of number of memory accesses.

The Transactional Memory implementation of
HDTA could be even improved and it is also compet-
itive with the one provided by GHC.

Dataflow models proved again their better effi-
ciency.

Acknowledgments: We thank Roberto D’Aprile for
setting up the initial framework. This research is
partly funded by the EU through projects HiPEAC (id.
287759), TERAFLUX (id. 249013) and AXIOM (id.
645496).

References:

[1] S. Bartolini, P. Foglia, C. A. Prete, and M. Solinas. Coher-
ence in the cmp era: Lesson learned in designing a llc archi-
tecture. WSEAS Trans. on Computers, 13:195–206, 2014.

[2] A. Fernandes Da Silva, J. Lopes, B. De Abreu Silva, and
J. Silva. The chipcflow project to accelerate algorithms us-
ing a dataflow graph in a reconfigurable system. WSEAS
Trans. on Computers, 11(8):265–274, 2012.

[3] R. Giorgi. TERAFLUX: Exploiting dataflow parallelism in
teradevices. In ACM Computing Frontiers, pages 303–304,
Cagliari, Italy, May 2012.

[4] R. Giorgi. Accelerating haskell on a dataflow architecture:
a case study including transactional memory. In Proc. Int.l
Conf. on Computer Engineering and Application (CEA),
pages 91–100, Dubai, UAE, February 2015.

[5] R. Giorgi et al. TERAFLUX: Harnessing dataflow in next
generation teradevices. Microprocessors and Microsystems,
38(8, Part B):976 – 990, 2014.

[6] R. Giorgi and P. Faraboschi. An introduction to df-threads
and their execution model. In IEEE Proceedings of MPP-
2014, pages 60–65, Paris, France, oct 2014.

[7] R. Giorgi, Z. Popovic, and N. Puzovic. DTA-C: A decou-
pled multi-threaded architecture for CMP systems. In Pro-
ceedings of IEEE SBAC-PAD, pages 263–270, Gramado,
Brasil, October 2007.

[8] R. Giorgi, Z. Popovic, and N. Puzovic. Exploiting DMA to
enable non-blocking execution in decoupled threaded archi-
tecture. In Proceedings of IEEE International Symposium

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 557 Volume 14, 2015

on Parallel and Distributed Processing - MTAAP Multi-
Threading Architectures and APplications, pages 2197–
2204, Rome, Italy, may 2009. IEEE.

[9] R. Giorgi, Z. Popovic, and N. Puzovic. Introducing hard-
ware tlp support for the cell processor. In Proceedings
of IEEE International Workshop on Multi-Core Computing
Systems, pages 657–662, Fukuoka, Japan, mar 2009. IEEE.

[10] R. Giorgi and A. Scionti. A scalable thread scheduling co-
processor based on data-flow principles. ELSEVIER Future
Generation Computer Systems, pages 1–10, 2015.

[11] T. Harris, A. Cristal, O. S. Unsal, E. Ayguade, F. Gagliardi,
B. Smith, and M. Valero. iTransactional Memory: An
Overview. IEEE Micro, 27(3):8–29, May 2007.

[12] T. Harris, J. Larus, and R. Rajwar. Transactional Memory.
Morgan and Claypool Publishers, 2nd edition, 2010.

[13] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Com-
posable Memory Transactions. In Proceedings of the Tenth
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’05, pages 48–60, New York,
NY, USA, 2005. ACM.

[14] Haskell Documentation Library. Software trans-
actional memory page. {https://hackage.
haskell.org/package/stm-2.1.1.2/docs/
Control-Monad-STM.html}. [Online; accessed
March-2015].

[15] M. Herlihy and J. E. B. Moss. Transactional Memory: Ar-
chitectural Support for Lock-free Data Structures. In Pro-
ceedings of the 20th Annual International Symposium on
Computer Architecture, ISCA ’93, pages 289–300, New
York, NY, USA, 1993. ACM.

[16] N. Ho, A. Mondelli, A. Scionti, M. Solinas, A. Portero,
and R. Giorgi. Enhancing an x86 64 multi-core architecture
with data-flow execution support. In ACM Proc. of Comput-
ing Froniers, pages 1–2, Ischia, Italy, May 2015.

[17] G. Hutton. Programming in Haskell. Cambridge University
Press, New York, NY, USA, 2007.

[18] Intel Corporation. Intel R© 64 and IA-32 Architectures De-
veloper’s Manual: Vol. 2B, January 2015.

[19] K. M. Kavi, R. Giorgi, and J. Arul. Scheduled dataflow: Ex-
ecution paradigm, architecture, and performance evaluation.
IEEE Trans. on Computers, 50(8):834–846, aug 2001.

[20] M. Martin, C. Blundell, and E. Lewis. Subtleties of Transac-
tional Memory Atomicity Semantics. IEEE Comput. Archit.
Lett., 5(2):17–17, July 2006.

[21] G. Matheou and P. Evripidou. Architectural support for
data-driven execution. ACM Trans. Archit. Code Optim.,
11(4):52:1–52:25, January 2015.

[22] M. Milutinovic, J. Salom, N. Trifunovic, and R. Giorgi.
Guide to DataFlow Supercomputing. Springer, Berlin, April
2015.

[23] U. of Glasgow. GHC official site. {http://www.
haskell.org/ghc/}. [Online; accessed March-2015].

[24] C. Perfumo, N. Sonmez, A. Cristal, O. S. Unsal, M. Valero,
and T. Harris. Dissecting Transactional Executions in
Haskell. In Second ACM SIGPLAN Workshop on Trans-
actional Computing, August 2007.

[25] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent
Haskell. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, PoPL ’96, pages 295–308, New York, 1996. ACM.

[26] S. Peyton Jones and S. Marlow. Secrets of the Glasgow
Haskell Compiler Inliner. J. Funct. Program., 12(5):393–
434, July 2002.

[27] S. L. Peyton Jones. Compiling Haskell by Program Trans-
formation: A Report from the Trenches. In Proceedings of
the 6th European Symposium on Programming Languages
and Systems, ESOP ’96, pages 18–44, London, UK, UK,
1996. Springer-Verlag.

[28] N. Shavit and D. Touitou. Software Transactional Memory.
In Proc. of the 12th Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 204–213, 1995.

[29] J. Silva and J. Lopes. A dynamic dataflow architecture us-
ing partial reconfigurable hardware as an option for multiple
cores. WSEAS Trans. on Computers, 9(5):429–444, 2010.

[30] M. Solinas et al. The TERAFLUX project: Exploiting the
dataflow paradigm in next generation teradevices. In Pro-
ceedings - 16th Euromicro Conference on Digital System
Design, DSD 2013, pages 272–279, Santander, Spain, 2013.

[31] K. Stavrou, D. Pavlou, M. Nikolaides, P. Petrides, P. Evripi-
dou, P. Trancoso, Z. Popovic, and R. Giorgi. Programming
abstractions and toolchain for dataflow multithreading ar-
chitectures. In IEEE Proceedings of the Eighth Interna-
tional Symposium on Parallel and Distributed Computing
(ISPDC 2009), pages 107–114, Lisbon, Portugal, jul 2009.
IEEE.

[32] M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, and
K. Donnelly. System F with Type Equality Coercions.
In Proceedings of the 2007 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementa-
tion, TLDI ’07, pages 53–66, New York, NY, USA, 2007.
ACM.

[33] A. Tolmach. An External Representation for the GHC
Core Language. {http://www.haskell.org/ghc/
docs/papers/core.ps.gz}, September 2001.

[34] VALGRIND Developers. Valgrind Tool Suite. {http://
valgrind.org/info/tools.html}. [Online; ac-
cessed March-2015].

[35] L. Verdoscia, R. Vaccaro, and R. Giorgi. A clockless com-
puting system based on the static dataflow paradigm. In
Proc. IEEE Int.l Workshop on Data-Flow Execution Models
for Extreme Scale Computing (DFM-2014), pages 1–8, aug
2014.

[36] L. Verdoscia, R. Vaccaro, and R. Giorgi. A matrix multi-
plier case study for an evaluation of a configurable dataflow-
machine. In ACM CF’15 - LP-EMS, pages 1–6, May 2015.

[37] P. Wadler. The Essence of Functional Programming. In Pro-
ceedings of the 19th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, PoPL ’92, pages
1–14, New York, NY, USA, 1992. ACM.

[38] Z. Yu, A. Righi, and R. Giorgi. A case study on the design
trade-off of a thread level data flow based many-core archi-
tecture. In Future Computing, pages 100–106, Rome, Italy,
sep 2011.

WSEAS TRANSACTIONS on COMPUTERS Roberto Giorgi

E-ISSN: 2224-2872 558 Volume 14, 2015

